Penalaran Induktif
Penalaran induktif merupakan suatu kegiatan, suatu proses atau suatu aktivitas berpikir untuk menarik suatu kesimpulan atau membuat suatu pernyataan baru yang bersifat umum (general) berdasarkan pada beberapa pernyataan khusus yang diketahui benar. Dalam hal ini telah terjadi proses berpikir yang berusaha menhubung-hubungkan fakta-fakta atau evidensi-evidensi khusus yang sudah diketahui menuju kepada suatu kesimpulan yang bersifat umum. Misalkan, jika ada siswa diminta untuk menunjukkan bahwa jumlah besar sudut-sudut suatu segitiga adalah 1800 , lalu setiap siswa diminta untuk membuat model segitiga sembarang dari kertas, menggunting sudut-sudut segitiga tersebut, dan mengimpitkannya. Diantara siswa mungkin ada yang membuat segitiga siku-siku, ada yang membuat segitiga sama kaki, sama sisi atau segitiga sembarang. Dari hasil yang diperoleh siswa menunjukkan hasil yang sama, yaitu jumlah besar sudut-sudut segitiga adalah 1800 .
Berdasarkan hal ini, dari beberapa kasus khusus itu yaitu dari setiap segitiga, akan didapat hasil yang sama sehingga dapat ditarik suatu kesimpulan yang bersifat umum bahwa jumlah besar sudut-sudut suatu segitiga adalah 1800 . Pernyataan atau kesimpulan yang didapat dari penalaran induktif bisa bernilai benar atau salah. Karenanya, di dalam matematika kesimpulan yang didapat dari proses penalaran induktif masih disebut dengan dugaan (conjecture). Kesimpulan tersebut boleh jadi valid pada contoh yang diperiksa, tetapi tidak dapat diterapkan pada keseluruhan contoh. Sebagai contoh, siswa diminta menentukan aturan yang digunakan untuk bilangan-bilangan 2, 4, 6. Jika aturan itu adalah “suatu barisan bilangan genap”, maka aturan itu sesuai dengan contoh. Tetapi, jika contohnya lebih bervariasi, misalnya 2, 3, 5, maka aturan semula tidak dapat lagi digunakan.
Dengan demikian melalui penalaran indiktif dapat dihasilkan suatu kesimpulan yang benar berkenaan dengan contoh khusus yang dipelajari, tetapi kesimpulan tersebut tidak terjamin untuk generalisasi. Meskipun penarikan kesimpulan dengan penalaran induktif tidak valid, tetapi penalaran induktif sangat bermanfaat dalam pengembangan matematika.
Penalaran Deduktif
Deduksi didefinisikan sebagai proses penalaran yang menerapkan hal-hal yang umum terlebih dahulu untuk seterusnya dihubungkan dalam bagian-bagian yang khusus. Pada penalaran deduktif proses penalaran konklusinya diturunkan secara mutlak dari premis-premisnya. Pada deduksi yang valid atau sahih, kesimpulan yang didapat dinyatakan tidak akan pernah salah jika premis-premisnya bernilai benar.
Melalui penalaran deduktif dapat menyimpulkan informasi lebih banyak daripada penalaran induktif. Artinya, dari keterangan tertentu dapat ditarik kesimpulan tentang hal-hal lain tanpa perlu memeriksanya secara langsung. Sebagai contoh, selalu dapat ditambahkan satu dari suatu bilangan. Dari keterangan tersebut dapat disimpulkan bahwa tidak ada bilangan terbesar atau bilangan terakhir, melainkan tak terbatas. Penalaran deduktif dapat menentukan apakah suatu konjektur yang muncul dikarenakan suatu intuisi atau deduksi secara logis serta konsisten dan apakah penalaran itu hanya untuk kasus-kasus tertentu atau kasus yang lebih umum.
0 komentar:
Posting Komentar